The structured sensitivity of Vandermonde-like systems
نویسندگان
چکیده
We consider a general class of structured matrices that includes (possibly confluent) Vandermonde and Vandermonde-like matrices. Here the entries in the matrix depend nonlinearly upon a vector of parameters. We define condition numbers that measure the componentwise sensitivity of the associated primal and dual solutions to small componentwise perturbations in the parameters and in the right-hand side. Convenient expressions are derived for the infinity norm based condition numbers, and order-of-magnitude estimates are given for condition numbers defined in terms of a general vector norm. We then discuss the computation of the corresponding backward errors. After linearising the constraints, we derive an exact expression for the infinity norm dual backward error and show that the corresponding primal backward error is given by the minimum infinity-norm solution of an underdetermined linear system. Exact componentwise condition numbers are also derived for matrix inversion and the least squares problem, and the linearised least squares backward error is characterised.
منابع مشابه
A Study of Vandermonde-like Matrix Systems With Emphasis on Preconditioning and Krylov Matrix Connection
The study focuses primarily on Vandermonde-like matrix systems. The idea is to express Vandermonde and Vandermonde-like matrix systems as the problems related to Krylov Matrices. The connection provides a different angle to view the Vandermondelike systems. Krylov subspace methods are strongly related to polynomial spaces, hence a nice connection can be established using LU factorization as pro...
متن کاملDisplacement Structure Approach to Polynomial Vandermonde and Related Matrices
In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach allows us to carry over all these results to the...
متن کاملDisplacement Structure Approach to PolynomialVandermonde and Related
||||||||||||||||||||||||||||||||||||||| ABSTRACT In this paper we introduce a new class of what we shall call polynomial Vandermonde-like matrices. This class generalizes the polynomial Vandermonde matrices studied earlier by various authors, who derived explicit inversion formulas and fast algorithms for inversion and for solving the associated linear systems. A displacement structure approach...
متن کاملFast Qr Factorization of Low-rank Changes of Vandermonde-like Matrices
VANDERMONDE-LIKE MATRICES LUCA GEMIGNANI Abstract. This paper is concerned with the solution of linear systems with coe cient matrices which are Vandermonde-like matrices modi ed by adding low-rank corrections. Hereafter we refer to these matrices as to modi ed Vandermonde-like matrices. The solution of modi ed Vandermondelike linear systems arises in the approximation theory both when we use R...
متن کاملStability analysis of algorithms for solving confluent Vandermonde-like systems
A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relativ...
متن کامل